Aplicación de Factores Ponderados para el Cálculo del NPR en el Procedimiento de AMEF

Autores/as

DOI:

https://doi.org/10.29105/revig1.4-24

Palabras clave:

AMEF, NPR, costo, ponderación, factores ponderados, AMEF, NPR, costo, ponderación, factores ponderados.

Resumen

La aplicación del Análisis de Modo y Efecto de Fallas (AMEF) es de suma importancia en las industrias dado que permite identificar posibles fallas en el diseño del producto o proceso, sus efectos y las acciones que eliminan o disminuyen dichos efectos. Sin embargo, los resultados obtenidos con el procedimiento actual para el cálculo del Número de Prioridad de Riesgo (NPR) no pueden ser utilizados como un criterio para establecer el orden de las mejoras requeridas para remover o reducir los modos de falla, puesto que dentro de un mismo AMEF se puede encontrar un NPR repetido en diferentes fallos potenciales. En esta investigación se propone un método para definir el orden en que se deben atacar los defectos de producto o proceso para facilitar la implementación de acciones para mejorar el diseño. Primero, se identifican los efectos de la introducción de factores ponderados en el cálculo del NPR, basados en el costo de los puntos involucrados en cada uno de los modos de falla, es decir, cuánto le cuesta a la empresa la severidad, ocurrencia y detección de una falla. Se presenta el análisis, agregando esta ponderación al procedimiento para obtener el NPR y finalmente se muestran los resultados.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Leonardo Gabriel Hernández-Landa, Universidad Autónoma de Nuevo León

Leonardo G. Hernandez-Landa holds a BSc. in Industrial Engineering from ITSPe in Veracruz, México and earned his PhD in Engineering from the graduate program in System Engineering at Department of Mechanical and Electrical Engineering, Universidad Autónoma de Nuevo León (UANL). Leonardo is currently a Professor of operations management at Department of Industrial Engineering, UANL in San Nicolás de los Garza, México, where he joined in 2016. Dr. Hernandez' research has primarily focused on methods for solving difficult discrete optimization problems arising in logistic, routing and transportation systems.

Elva Patricia Puente Aguilar, Universidad Autónoma de Nuevo León

Elva Patricia Puente Aguilar is a Professor of Industrial Engineering and Management area in the Universidad Autónoma de Nuevo León since 2010, teaching courses such as Industrial Engineering, Work Study, Manufacturing Processes, Materials Technology. She earned B.Sc. in Industrial Engineering with minor in Management and Master in Business Administration degree from Universidad Autónoma de Nuevo León. Currently she is a PhD student in Project Engineering at Universidad Internacional Iberoamericana. She has got ten years experience in manufacturing industry with expertise in the areas of material and production planning, manufacturing engineering, quality engineering and new products engineering. Her research interests include design and optimization of operations and education and engineering linkage in production systems.

Argelia Vargas Moreno, Universidad Autónoma de Nuevo León

Argelia Vargas-Moreno. BSc. in Industrial Engineering with minor in Management and Master of Industrial Engineering by the UANL. Dean at School of Chemistry Sciences. Full time professor and taught undergraduate and graduate courses such as Industrial Engineering, Methods engineering and Operations research.  Worked as project engineer at Hylsa, at TUBACERO and IMSA. She has been recognized by the SEP with the PRODEP certification;  Her academic publications include books on the following topics:  Industrial Engineering, methods engineering, statistics, probability and accounting.

Citas

Chrysler LLC, Ford Motor Company, & General Motors Corporation. (2008). Potential Failure Mode and Effects Analysis FMEA Reference Manual (4th ed.) AIAG.

Denisis, A., Millán G., Millán, F., Moya, G., Soler, A., Colella, V. (2012). Detección y análisis de fallas. Análisis de modos y efectos de fallas. Universidad Nacional Experimental Politécnica Antonio José de Sucre.

Gilchrist W. (1993). Modeling failure modes and effects. International Journal of Quality and Reliability Management, pp .1-23.

Kmenta, S., & Ishii, K. (2000). Scenario-Based FMEA: A Life Cycle Cost Perspective. Volume 5: 14th Reliability, Stress Analysis, and Failure Prevention Conference; 7th Flexible Assembly Conference. https://doi.org/10.1115/detc2000/rsafp-14478

Lange, K., Leggett, S., & Baker, B. (2001). Potential failure mode and effects analysis (FMEA) reference manual. AIAG, Southfield, Michigan.

Liu, H. C., Liu, L., & Liu, N. (2013). Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Systems with Applications, 40(2), 828–838. https://doi.org/10.1016/j.eswa.2012.08.010

McDermott, R. E., Mikulak, R. J., & Beauregard, M. R. (2009). FMEA. New York: Taylor & Francis Group.

Rasmussen, N. C. (1981). The application of probabilistic risk assessment techniques to energy technologies. Annual Review of Energy, 6(1), 123-138.

Rhee, S. J., & Ishii, K. (2003). Using cost based FMEA to enhance reliability and serviceability. Advanced engineering informatics, 17(3-4), 179-188.

Sharma, K. D., & Srivastava, S. (2018). Failure mode and effect analysis (FMEA) implementation: a literature review. Journal of Advanced Research Aeronautical Space Science, 5, 1-17.

Spreafico, C., Russo, D., & Rizzi, C. (2017). A state-of-the-art review of FMEA/FMECA including patents. Computer Science Review, 25, 19-28.

Stamatis, D. H. (2003). Failure Mode and Effect Analysis: FMEA from Theory to Execution (2.a ed.). American Society for Quality ASQ.

Stamatis, D. H. (2018). Advanced product quality planning: the road to success. CRC Press.

Xiao, N., Huang, H. Z., Li, Y., He, L., & Jin, T. (2011). Multiple failure modes analysis and weighted risk priority number evaluation in FMEA. Engineering Failure Analysis, 18(4), 1162-1170.

Xu, K., Tang, L. C., Xie, M., Ho, S. L., & Zhu, M. L. (2002). Fuzzy assessment of FMEA for engine systems. Reliability Engineering & System Safety, 75(1), 17-29.

Publicado

2025-06-11 — Actualizado el 2025-06-17

Versiones

Cómo citar

Hernández-Landa, L. G., Puente Aguilar, E. P., & Vargas Moreno, A. (2025). Aplicación de Factores Ponderados para el Cálculo del NPR en el Procedimiento de AMEF. Revista Ingeniería Y Gestión Industrial, 1(4). https://doi.org/10.29105/revig1.4-24 (Original work published 11 de junio de 2025)

Artículos más leídos del mismo autor/a